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Abstract

Obfuscation is applied to large quantities of benign and ma-
licious JavaScript throughout the web. In situations where
JavaScript source code is being submitted for widespread use,
such as in a gallery of browser extensions (e.g., Firefox), it is
valuable to require that the code submitted is not obfuscated
and to check for that property. In this paper, we describe NO-
Fus, a static, automatic classifier that distinguishes obfuscated
and non-obfuscated JavaScript with high precision. Using a
collection of examples of both obfuscated and non-obfuscated
JavaScript, we train NOFUS to distinguish between the two and
show that the classifier has both a low false positive rate (about
1%) and low false negative rate (about 5%).

Applying NOFUS to collections of deployed JavaScript, we
show it correctly identifies obfuscated JavaScript files from
Alexa top 50 websites. While prior work conflates obfusca-
tion with maliciousness (assuming that detecting obfuscation
implies maliciousness), we show that the correlation is weak.
Yes, much malware is hidden using obfuscation, but so is be-
nign JavaScript. Further, applying NOFUS to known JavaScript
malware, we show our classifier finds 15% of the files are un-

obfuscated, showing that not all malware is obfuscated.



1. Introduction

In many ways, JavaScript has become the new assembly lan-
guage. It is used for complex web sites such as Facebook
and also for reasons as diverse as creating browser exten-
sions and operating system widgets. JavaScript is a highly
dynamic, expressive language, which means that much of
the code that is executed can be generated at runtime. How-
ever, the expressiveness of JavaScript is often misused by
attackers to create obfuscated malware, which has led to re-
search in trying to detect malware using both static and run-
time techniques [1, 3,5, 8, 10, 21].

Of course, there is plenty of benign code that has been
obfuscated, often as a light form of intellectual property pro-
tection, by toolkits such as JavaScript Obfuscator [15]. In
many contexts, it is valuable to distinguish between “good”
and “bad” JavaScript code, for instance, when accepting
an application to a centralized software repository such as
a browser extension gallery for a browser such as Firefox
or Google Chrome. Some techniques such as AdSafe [6],
Caja [17], and Gatekeeper [13] severely restrict the expres-
siveness of allowed JavaScript to allow analysis. Often such
strict restrictions are not tolerable for large-scale industrial
use.

In this paper, we present NOFUS, a tool that uses au-
tomatic techniques for determining whether a piece of
JavaScript code has been obfuscated for any purpose, ma-
licious or otherwise. NOFUS provides an obfuscation score,
which shows how likely a particular input JavaScript file is
to be obfuscated; this value can be thresholded in practice.

Previous work assumes that obfuscated code is also mali-
cious and consequently conflates the two concepts. This ap-
proach can have negative consequences on the false positive
rate of malware detectors. For example, our recent experi-
ence with the Norman Antivirus engine [19] indicates that it
sometimes triggers on obfuscated JavaScript that is not nec-
essarily malicious, resulting in possible false positives. In a
web crawl that resulted in 517 Norman AV alerts total, we
observed that 195 (37.7%) of them were caused by obfus-
cated JavaScript.

Unlike all prior work, we focus on defining a forgiving
metric of whether JavaScript is amenable to further analy-
sis, either manual or through automation. If a piece of code
passes our fast initial filter, previously proposed static tech-
niques [4, 8, 13] can be used to determine whether is benign.

Much of the previous work attempts to classify malware
broadly, and does not attempt to distinguish between obfus-
cation and other forms of malicious intent. The little work
that does, considers obfuscation specifically [3], and at-
tempts to measure obfuscation through string pattern analy-
sis. Our approach differs in that it is based on whole-program
classification using a Baysian classifier over the JavaScript
AST similar to what is done in the Zozzle project [8].

Using hand-categorized training sets, we train a static
classifier to compute the obfuscation score metric and show
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Figure 1: Fragment of Obfuscated JavaScript Discovered in Alexa Top 50
Website.

that it has both a low false positive rate (about 1%) and low
false negative rate (about 5%). Beyond measuring its effec-
tiveness, we apply our classifier to several large collections
of existing JavaScript and consider the degree of obfusca-
tion present in these collections. To give readers more in-
tuition about what obfuscated code actually looks like, we
show some obfuscated code that our classifier correctly de-
tected in JavaScript extracted from Alexa top 50 websites in
Figure 2.

1.1 Paper Contributions

This paper makes the following contributions:

¢ This is the first paper the considers the problem of detect-
ing JavaScript obfuscation without conflating such obfus-
cation with malicious intent. We make the case for why
such detection is valuable and present an effective solu-
tion.

e We present NOFUS, an obfuscation detector that uses a
static classifier, and show that it has low false positive
and false negative rates.

e We apply NOFUS to a collection of existing JavaScript
code to present an assessment of the quantity of obfus-
cated JavaScript present in collections such as the Alexa
top 50, popular JavaScript libraries, and known malware.

e We demonstrate that malware is not always obfuscated
if enough unfolding is applied before analysis. Similarly,
we find uses of obfuscation in benign JavaScript, demon-
strating that obfuscation detectors that assume malicious
intent will likely have many false positives.

1.2 Paper Organization

The rest of the paper is organized as follows. Section 3 pro-
vides background for this work. Section 4 describes our im-
plementation, which is largely based on previous work [8].
Section 5 presents the methodology we use for evaluation,
while Section 6 presents our results. We discuss related work
in Section 7, and conclude in Section 8.

2. Introduction

In many ways, JavaScript has become the new assembly lan-
guage. It is used for complex web sites such as Facebook



and also for reasons as diverse as creating browser exten-
sions and operating system widgets. JavaScript is a highly
dynamic, expressive language, which means that much of
the code that is executed can be generated at runtime. How-
ever, the expressiveness of JavaScript is often misused by
attackers to create obfuscated malware, which has led to re-
search in trying to detect malware using both static and run-
time techniques [1, 3,5, 8, 10, 21].

Of course, there is plenty of benign code that has been
obfuscated, often as a light form of intellectual property pro-
tection, by toolkits such as JavaScript Obfuscator [15]. In
many contexts, it is valuable to distinguish between “good”
and “bad” JavaScript code, for instance, when accepting
an application to a centralized software repository such as
a browser extension gallery for a browser such as Firefox
or Google Chrome. Some techniques such as AdSafe [6],
Caja [17], and Gatekeeper [13] severely restrict the expres-
siveness of allowed JavaScript to allow analysis. Often such
strict restrictions are not tolerable for large-scale industrial
use.

In this paper, we present NOFUS, a tool that uses au-
tomatic techniques for determining whether a piece of
JavaScript code has been obfuscated for any purpose, ma-
licious or otherwise. NOFUS provides an obfuscation score,
which shows how likely a particular input JavaScript file is
to be obfuscated; this value can be thresholded in practice.

Previous work assumes that obfuscated code is also mali-
cious and consequently conflates the two concepts. This ap-
proach can have negative consequences on the false positive
rate of malware detectors. For example, our recent experi-
ence with the Norman Antivirus engine [19] indicates that it
sometimes triggers on obfuscated JavaScript that is not nec-
essarily malicious, resulting in possible false positives. In a
web crawl that resulted in 517 Norman AV alerts total, we
observed that 195 (37.7%) of them were caused by obfus-
cated JavaScript.

Unlike all prior work, we focus on defining a forgiving
metric of whether JavaScript is amenable to further analy-
sis, either manual or through automation. If a piece of code
passes our fast initial filter, previously proposed static tech-
niques [4, 8, 13] can be used to determine whether is benign.

Much of the previous work attempts to classify malware
broadly, and does not attempt to distinguish between obfus-
cation and other forms of malicious intent. The little work
that does, considers obfuscation specifically [3], and at-
tempts to measure obfuscation through string pattern analy-
sis. Our approach differs in that it is based on whole-program
classification using a Baysian classifier over the JavaScript
AST similar to what is done in the Zozzle project [8].

Using hand-categorized training sets, we train a static
classifier to compute the obfuscation score metric and show
that it has both a low false positive rate (about 1%) and low
false negative rate (about 5%). Beyond measuring its effec-
tiveness, we apply our classifier to several large collections
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Figure 2: Fragment of Obfuscated JavaScript Discovered in Alexa Top 50
Website.

of existing JavaScript and consider the degree of obfusca-
tion present in these collections. To give readers more in-
tuition about what obfuscated code actually looks like, we
show some obfuscated code that our classifier correctly de-
tected in JavaScript extracted from Alexa top 50 websites in
Figure 2.

2.1 Paper Contributions

This paper makes the following contributions:

e This is the first paper the considers the problem of detect-
ing JavaScript obfuscation without conflating such obfus-
cation with malicious intent. We make the case for why
such detection is valuable and present an effective solu-
tion.

e We present NOFUS, an obfuscation detector that uses a
static classifier, and show that it has low false positive
and false negative rates.

e We apply NOFUS to a collection of existing JavaScript
code to present an assessment of the quantity of obfus-
cated JavaScript present in collections such as the Alexa
top 50, popular JavaScript libraries, and known malware.

e We demonstrate that malware is not always obfuscated
if enough unfolding is applied before analysis. Similarly,
we find uses of obfuscation in benign JavaScript, demon-
strating that obfuscation detectors that assume malicious
intent will likely have many false positives.

2.2 Paper Organization

The rest of the paper is organized as follows. Section 3 pro-
vides background for this work. Section 4 describes our im-
plementation, which is largely based on previous work [8].
Section 5 presents the methodology we use for evaluation,
while Section 6 presents our results. We discuss related work
in Section 7, and conclude in Section 8.

3. Background

This section provides additional background on the
JavaScript language and obfuscation techniques used in that
context. The relevance of this topic comes from the fact that
JavaScript code is everywhere. Indeed, JavaScript is used
for large-scale web site development, with libraries such as



jQuery and Prototype increasing adoption. JavaScript is also
used in the mobile context; for instance, Palm OS (now we-
bOS) is largely JavaScript-based.

However, often JavaScript code is used as an exten-
sion language. For instance, browser extensions in Google
Chrome and Firefox are written in JavaScript. It is also used
for desktop operating system widgets in the Windows side-
bar and Yahoo widgets (Konfabulator) dashboard. JavaScript
is used in Facebook applications [16,17] and to program
rich advertisements [6]. In all these contexts, there is both
an opportunity and a need to check the JavaScript code be-
fore it is accepted. This paper advocates NOFUS, a flexible
and lightweight filter that can be used for this purpose.

3.1 Centralized Software Repositories

There is a pronounced trend in the industry towards a cen-
tralized software distribution model, where the platform
manufacturer is responsible for validating, maintaining, and
hosting the software being distributed. Some prominent ex-
amples of this model include mobile apps in the app store
hosted by Apple, Google, and Microsoft for their respective
mobile operating systems. Browser manufacturers such as
Mozilla and Google host extension galleries for their prod-
ucts. Operating systems manufacturers such as Microsoft of-
fer software through sites such as Windows Marketplace.

In the context of a centralized software repository, when
the software malfunctions, due to either a genuine bug or
a security exploit, the blame is often placed on the owner
of the platform. For instance, the fact that many Firefox
extensions slow down the browser startup process makes
Mozilla Firefox look bad. As such, there is often a need to
check the software before allowing it to be hosted. Apple
performs a largely manual review process before allowing
apps into the app store. Mozilla relies on a community-based
beta phase for extensions. NOFUS presented in this paper
provides a degree of automation when it comes to enforcing
whether submitted JavaScript may contain obfuscation. The
filtering performed by NOFUS is flexible: we realize that
there is no one-size-fits-all approach to this kind of filtering
and allow the platform manufacturer to set the rules.

3.2 JavaScript Runtime

JavaScript is a single-threaded language that uses an event-
based execution model. At runtime, one event handler is
picked up from the queue and is executed to completion. As
part of execution, it might create other handlers, generate
new code, etc.

Code generation at runtime is fairly common in
JavaScript. The most widely used technique is the use of
eval, but other approaches such as calling document.write
and setTimeout are also widely used to convert run-
time strings into invocable code. Note that, while there
are frequently better ways to express the same functional-
ity in JavaScript, these techniques are used in completely
benign code: eval is used for JSON string evaluation;

document.write is used to inject new frames into the doc-
ument, etc.

When trying to understand runtime execution of
JavaScript code, it is therefore useful to think about the un-
folding tree, a tree of code contexts that represents code cre-
ation (or “unfolding”) at runtime. One approach to obfus-
cation is to hide the intent of code using such unfoldings
(based on eval or document.write). As with other forms
of obfuscation, however, the use of these mechanisms does
not imply malicious intent. In addition, obfuscation through
unfolding is relatively easy to defeat if one has access to the
underlying JavaScript runtime and can see the unfolded code
appear as it is generated. For the remainder of this paper, we
consider the problem of classifying JavaScript fragments ir-
respective of whether they are folded or unfolded.

3.3 JavaScript Obfuscation Techniques

This section provides a very brief overview of some of the
obfuscations techniques used in the wild; a more complete
survey can be found in [14].

String obfuscation Much of the difficulty of applying stan-
dard anti-virus techniques to JavaScript comes from the fact
that any form of static string content is easily obfuscated.
Some techniques in this space include

® % encoding: using the JavaScript unescape function
to convert an URL-encoded string to avoid it having to
appear as pliantext. A similar tecnique involves using
debase64 to decode base 64-encoded text.

¢ Unicode encoding: using a Unicode representation of a
string such as \u0048\u0065. . . to avoid it having to appear
as plaintext.

¢ String manipulation: using string concatenation, either
in isolation or together with document.write or eval.

e Character substitution: involves running a regular ex-
pression replace on a string.

This is by no means an exhaustive list, but it suggests
some good building blocks that may be combined to derive
more complicated obfuscation strategies such as

for(i=0;i<"iDMMNVNSME".length;i++) {
document .write(
String.fromCharCode (
"iDMMNVNSME" . charCodeAt (i)\~0x21));
}

shown in Howard [14].

Obfuscated Field References In JavaScript, instead of the
traditional o.f notation used for object access, one can in-
stead resort to a bracket form o[”f”]. The problem, of
course, is that the index expression may be computed and,
as such, is subject to the string obfuscation strategies out-
lined above. So, document.write, which might otherwise
be suspect may be obfuscated using

document ["wr"+"i"+"15t355e3" .replace(/[0-9]/g, "")]



Environment Interactions Within a web browser,
JavaScript code runs in the context of a browser binding.
It is the binding that exposes JavaScript objects such as the
Document that actually makes JavaScript programs useful.
The DOM, in particular, allows several types of obfuscation
opportunities.

One approach is to make scripts difficult to reverse en-
gineer by scattering them across the HTML using multi-
ple <script> blocks. Another technique involves storing pro-
gram data (often, the payload) within the DOM and then be-
ing subsequently extracted from it. This way, the payload
will not be clearly discernable from the code itself.

3.4 Obfuscation and Minimization

There are a number of commercial and free tools available
on the web that will obfuscate JavaScript (e.g.,see [9, 15, 20,
23]. A different class of tools is available for the purpose
of minimizing and/or compressing JavaScript (e.g., see [7,
11,12]). There is an important distinction between these
two types of tools that is relevant for our classification ap-
proach. While minification tools do reduce the readability of
JavaScript code, they do not agressively attempt to hide the
intent and/or content of the code to an interested reader us-
ing the kinds of techniques mentioned above. In this paper,
the NOFUS classifier we examine is not trained to recognize
minified code as obfuscated. Such training is possible if de-
sired, but we leave that for future work.

3.5 Deploying NOFUsS

There are a number of scenarios in which NOFUS could be
deployed. First, as mentioned, it could be used as part of
an automatic filtering process for determining if JavaScript
code submitted to a repository was sufficiently unobscure.
After passing the NOFUS test, other kinds of automated
static analysis could be applied, including checking for
JavaScript subsets, policy violations, etc. [13]. Second, it
could be used in a malware context where a file detected
as obfuscated by NOFUS is examined with greater scrutiny
by more intrusive and expensive static and dynamic analysis
tools. Note that labeling JavaScript detected as obfuscated
by NOFUS does not necessarily imply that it is malicious,
but greater care can be taken with such files once the fast
NoOFus filter detects obfuscation.

4. NoOFuUSs Implementation

NoFus makes use of a statistical classifier to efficiently
identify obfuscated JavaScript. Figure 3 illustrates the over-
all NoFuUs architecture. Note that our approach follows our
previous work, Zozzle, where we use a similar method to
statically classify malware. As a result, we only summarize
the approach here and refer readers to futher details in our
previous paper [8].
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4.1 Feature Extraction

We start with a set of training data that contains examples
of both obfuscated and unobfuscated JavaScript source. Sec-
tion 5 describes how we obtained hand-labeled files for train-
ing and testing purposes. With labeled JavaScript files, we
automatically extract features from them that are predictive
of obfuscation. For NOFUS, we create features based on the
hierarchical structure of the JavaScript abstract syntax tree
(AST). Specifically, a feature consists of two parts: a context
in which it appears (such as a loop, conditional, try/catch
block, etc.) and the text (or some substring) of the AST node.
In our evaluation, we consider different amounts of con-
text, including none, 1-level (just the innermost surround-
ing context), and n-level (all enclosing contexts). For a given
JavaScript context, we only track whether a feature appears
or not, and not the number of occurrences. To efficiently ex-
tract features from the AST, we traverse the tree from the
root, pushing AST contexts onto a stack as we descend and
popping them as we ascend.

Figure 4 illustrates the kinds of features that our clas-
sifier uses to determine if a file is obfuscated. It contains
some of the operations we already mentioned, such as
document.write as well as some unexpected values, such
peculiar expressions such as c&0x1f and z >>> 5. Appar-
ently, most unobfuscated files fail to contain these expres-
sions, whereas obfuscated files sometimes will.

Following Zozzle, to limit the possible number of fea-
tures, we only extract features from specific nodes of the
AST: expressions and variable declarations. At each of the



Feature Probability
typeerror 0.8972
/%/g 0.8972
document.write 0.8885
z>>>5 0.8291
xxteagecrypt 0.8291
utf8tol6 0.8291
delta = 0x9e3779b9; 0.8291
c&0x1f 0.8291
yycwy 0.7443

Figure 4: Example features selected by NOFUS.

expression and variable declaration nodes, a new feature
record is added to that script’s feature set.

If we use the text of every AST expression or variable
declaration observed in the training set as a feature for the
classifier, it will perform poorly. This is because most of
these features are not informative (that is, they are not corre-
lated with either non-obfuscated or obfuscated training set).
To improve classifier performance, we instead pre-select fea-
tures from the training set using the y? statistic to iden-
tify those features that are useful for classification. A pre-
selected feature is added to the script’s feature set if its text
is a substring of the current AST node and the contexts are
equal. The method we used to select these features is de-
scribed in the following section.

4.2 Feature Selection

As illustrated in Figure 3, after creating an initial feature set,
NOFUS performs a filtering pass to select those features that
are most likely to be most predictive. For this purpose, we
used the x? algorithm to test for correlation. We include
only those features whose presence is correlated with the
categorization of the script (obfuscated or unobfuscated). We
selected features with X2 > 10.83, which corresponds with
a99.9% confidence that the two values (feature presence and
script classification) are not independent.

4.3 Classifier Training

Classifying a fragment of JavaScript requires traversing its
AST to extract the fragment’s features, multiplying the con-
stituent probabilities of each discovered feature (actually im-
plemented by adding log-probabilities), and finally multiply-
ing by the prior probability of the label. Classification can
be performed in linear time, parameterized by the size of the
code fragment’s AST, the number of features being exam-
ined, and the number of possible labels.

5. Methods

In this section, we decribe out methods for evaluating NO-
FUs. Our evaluation is based on cross validation using hand-
labeled sets of obfuscated and non-obfuscated files.

Collection Source Files
Obfuscated (labeled) Nozzle non-malicious 563
Non-obfuscated (labeled)  Firefox extensions 3,954
JavaScript libraries Google’s CDN 20
Alexa Top 50 alexa.com 7,977
Google Gadgets Google 1,170
Windows Live Widgets live.com 2,700
Sideshow Gadgets Microsoft 4,468
Tool-obfuscated code Libraries and extensions 22
Malware files Nozzle malicious 755

Figure 5: Sources of JavaScript code for training and analysis

5.1 JavaScript Collectons

Figure 5 indicates the size of the our JavaScript collections
and where we acquired them. The first two sets of files (Ob-
fuscated and Non-obfuscated) are collections of JavaScript
files that are hand labeled. The Obfuscated files are taken
from a collection of JavaScript files collected during a de-
ployment of Nozzle [21], which is a dynamic heap-spraying
detection system. In the course of our Nozzle deployment,
we extracted JavaScript fragments that were being inter-
preted by the JavaScript runtime and saved them. In post-
processing those fragements by hand, we discovered that
only some of them contained truly malicious code (e.g., with
an identifiable heap spray, shellcode, and browser vulerabil-
ity), while other fragments were inserted soley for the pur-
pose of obfuscatating the malicious code that was eventually
generated. These fragments are not themselves malicious,
and we collected such files to form the Obfuscated set. The
Non-obfuscated JavaScript files were taken from a collection
of FireFox browser extensions (all written in JavaScript). Be-
cause they contain hand-written JavaScript that is intended
to be reviewed by humans [18], these files contain unobfus-
cated code by design.

In addition to our testing and training sets, Figure 5
lists collections of JavaScript that we evaluate with NOFUS.
Specifically, we have collected JavaScript files from a variety
of places, including the Alexa Top 50 websites, all presum-
ably benign; from files detected by Nozzle that have been
hand-labeled as malicious; from various JavaScript libraries,
such as jQuery; from a collection of JavaScript widgets, etc.
We also applied two available JavaScript obfuscators [9, 15]
to a collection of unobfuscated files to determine if NOFUS
is able to identify obfuscation from specific obfuscators. The
intent of our investigation is to understand how many of
the files in these collections are considered obfuscated and
whether NOFUS does a reasonable job classifying them. One
of our contentions is that malicious code is not necessarily
obfuscated and we present evidence to support this.

5.2 Cross Validation

To evaluate the NOFUS classifier, we used the following
approach. We chose a random 25% of our hand-labeled



datasets to use for training and the remaining 75% for test-
ing. Because the files picked for training are chosen ran-
domly, we repeated our experiments 9 times, picking a dif-
ferent random 25% each time, and averaged our results. Fol-
lowing the methods outlined in our Zozzle paper [8] we ex-
tract a set of predictive features automatically from the train-
ing set and then train a classifier with that set of features. Us-
ing the 25% of the files for training, we constructed a naive
Bayesian classifier and then applied the resulting classifier
to the remaining 75% of the files.

While there are a number of possible parameters that can
be varied in such experiments, for the sake of brevity we
focus on specific configurations in this paper. Zozzle experi-
ments [8] show that a training set smaller than 25% can also
be effective—we fix the size of the training set at 25%. Like-
wise, our prior work compares a set of hand-picked features
against an automatically generated set of features—here we
do not consider how effective a set of hand-picked features
might be because our prior work indicates that automatic
feature selection is uniformly better than hand-picked fea-
tures.

6. Experimental Evaluation

In this section, we seek to answer the following questions:

e How effective is our static obfuscation classifier in terms
of false positive and false negative results when it is
applied to a collection of labeled samples?

e How much obfuscated code does the detector detect
when applied to a collection of deployed JavaScript from
Alexa top 50 web sites?

e What is the performance of the obfuscation classifier?

6.1 Classifier Effectiveness

Using the methods described in the previous section, we
evaluate the effectiveness of the NOFUS classifier. For these
evaluations, we vary the number of features included in the
classifier (prioritizing those that have the greatest discrimi-
nation value) and also consider classifiers that include vary-
ing levels of AST hierarchy (flat, 1-level, and n-level). The
false negative rate measures the fraction of files that our clas-
sifier labels as unobfuscated in the 75% of Obfuscated files
withheld for evaluation. Figure 6 shows the false negative
rate of different NOFUS classifiers as a function of number
of features used and amount of AST hierarchy used. As the
figure shows, the false negative rate increases as more fea-
tures are included in the classifier, reaching at high as 40%
for n-level classifiers with 1000 features. This result sug-
gests that including more features leads to greater ambiguity
in classifying many of the obfuscated files, perhaps because
they also contain features that suggest that they are unobfus-
cated as well. The figure also shows that greater amounts of
AST context typically hurt the false negative rate. One rea-
son for this result is that the presence of context (e.g., that
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Figure 6: Classification false negative rate as a function of feature set size
for flat, 1-level, and n-level classifiers.

a particular attempt at obfuscation only appears in specific
contexts, such as in a loop) may not be predictive. In which
case, the hierarchy just dilutes the predictiveness of a partic-
ular feature, requiring more features, which we see leads to
higher false negative rates.

The false positive rate measures the fraction of the Non-
obfuscated files that our classifier labels as obfuscated. Fig-
ure 7 shows the false positive rates of various classifiers.
Overall, the false positive rate is very low and trends the
opposite of the false negative rate—the more features used
the lower the false positive rate. The suggestion here is that
with many features, a larger number of features need to be
present to classify a file as obfuscated. We note that the pre-
cision of our false positive results is limited by the number
of files in our Obfuscated test set (422 files). Consequently,
there is more variation in our results caused by randomness
in the training set selection. While the numbers are suffi-
ciently noisey to deny strong claims about the impact of
features or hierarchy, we do observe that the flat classifier
has a uniformly low false positive rate and appears effective
even with only 100 features. Given that additional features
increase the classification time for the rest of this evaluation,
we use a NOFUS classifier with a flat hierarchy and 100 fea-
tures.
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Figure 7: Classification false positive rate as a function of feature set size
for flat, 1-level, and n-level classifiers.
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Figure 8: Classifier results for different JavaScript collections.

6.2 Classifying Deployed JavaScript

In this section, we consider the effectiveness of applying
our classifier to existing collections of JavaScript code. Our
goal is to understand two things: first, what the distribution
of obfuscated code is in these collections, and second, is
our classifier effective in discriminating obfuscated from
unobfuscated code.

Figure 8 shows a table of NOFUS results when it is ap-
plied to various collections of JavaScript. Each row repre-
sents the number of files in each collection that showed a par-
ticular range of obfuscation scores, indicated in Column 1.
For example, the figure shows that all 20 JavaScript library
files had an obfuscation measure of less than 0.1. Similarly,
21 of the Sidebar files had an obfuscation score above 0.9.

The most striking thing about this table is that very few
files appear to be obfuscated in any of the collections. For
some of the collections, such as the JavaScript libraries,
Google Gadgets, Live Widgets, and Windows Sidebar, this is
understandable, because the code is written by humans and
intended to be read. Surprisingly, while we thought that the
Alexa Top 50 sites would include a mix of obfuscated and
unobfuscated code, in fact we detected very little obfusca-
tion. We hand-checked the few occurrences of some degrees
of obfuscation in Alexa and found the most obfuscated file
was the one we included in the Introduction. We hypothe-
size that high-traffic benign websites may avoid obfuscation
as a general rule so that antivirus detectors don’t accidently
trigger on them, leading to a reduction in customer satisfac-
tion. Another possibility is that NOFUS is being too careful
in avoiding false positives and misclassifying many of the
Alexa sites an unobfuscated, leading to false negatives.

The Sidebar widgets collection is the only one with a
number of high-obfuscation files. We investigated these in
greater detail, and found that most if not all of these files
are false positives. The files in question contain code specifi-
cally targeted for encryption (e.g., md5, crypto, etc.), codecs,
base64 manipulation, etc. The fact that these were detected
tells us that our classifier is finding features that are in-
dicative of obfuscation, but it also points out that such ap-
proaches are susceptible to false positives.
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Figure 9: Classifier results for Nozzle-labeled malware.

6.3 JavaScript Obfuscated with Known Tools

We applied NOFUS to a small collection of files explicitly
obfuscated with two available obfuscators [9, 15] to deter-
mine its effectiveness in classifying obfuscation caused by
a specific obfuscator. We used four of the obfuscated files
to train NOFUS, and the remaining 18 files as a test suite.
Having been trained explicitly with just a few files obfus-
cated with the particular tools, NOFUS correctly classifies
all the other files obfuscated with those tools correctly. When
NOFUS is applied to the original, unofuscated source of the
same files, it incorrectly classifies only one as obfuscated
(1/18 false positive rate).

6.4 Malware versus Obfuscated Code

Figure 9 presents results of NOFUS when applied to files
previous hand-categorized as malicious for our Zozzle
work [8]. The figure shows a histogram of the degree of ob-
fuscation present in the collection. We see that while many
files are tagged as obfuscated by NOFUS, a significant frac-
tion (more than 15%) are not. We examined these files and
found that they contain unobfuscated malicious code, typ-
ically the result of several levels of code unfolding. We
conclude that assuming malicious code always contains at-
tempts at obfuscation can significantly increase the false
negative rate of malware detectors.

6.5 Performance

On average, we measure the NOFUS processing time to
be approximately 5 megabytes per second (not including
JavaScript parsing time), which is faster than the results
reported for Zozzle (e.g., 0.4 to 1.6 megabytes per second).
This performance improvement is likely due to the fact that
are are using fewer features and the flat classified in our
studies, whereas the Zozzle results used a 1-level classifier
with 500 features.

7. Related Work

Because JavaScript has become a major platform for ma-
licious attacks on browsers and other applications, such as
Adobe Reader, there has been a variety of recent techniques



attempting to detect and prevent attacks based on malicious
JavaScript (e.g., see [1,3,5,8,21]). Relatively little of this
prior work focuses solely on detecting obfuscation specifi-
cally, and none of the prior work distinguishes obfuscation
from maliciousness.

7.1 Detecting Obfusction

The most closely related work on obfuscation detection is
that of Choi et al. [3], who observe that strings that appear
in obfuscated, malicious web pages have qualities that dis-
tinguish them from unobfuscated pages. Specifically, they
use properties that include the distribution of byte values in
strings, the distribution of n-grams in strings, and the overall
string length to classify the JavaScript in an web page as ma-
licious or benign. Using 33 samples of malicious JavaScript,
they show that a combination of their techniques will clas-
sify 30 out of the 33 files as malicious. In contrast, our
classifier does not look for specific structures of contents of
strings, but instead uses the content and structure of the en-
tire JavaScript AST for classification.

Kim et al. [1] present findings illustrating the kinds of ob-
fuscation techniques being applied to malicious JavaScript,
and present similar results to Choi et al., indicating that
malicious JavaScript has qualities different from benign
JavaScript. Neither Choi or Kim distinguish between benign
obfuscated JavaScript and malicious JavaScript, as we do,
and our false positive and false negative rates are lower than
those reported.

7.2 Building Malware Classifiers

Our previous work, Zozzle [8], uses static AST features and
a Bayesian classifier to classify JavaScript malware based
on training sets. Because the malware samples used to train
Zozzle were collected using the Nozzle heap-spray detec-
tor [21], Zozzle is specifically effective at classifying mal-
ware with shellcode, heap sprays, and known vulnerabili-
ties. NOFUS takes Zozzle forward by considered the specific
problem of classifying obfuscated code and analyzing exist-
ing JavaScript collections with our new classifier.

Cova et al. [5] present a comprehensive approach to mal-
ware detection that includes efforts to anticipate and undo
obfuscation techniques. They include features such as the
relationship between string definitions and uses, the number
of dynamic code executions (e.g., calls to eval), and the size
of dynamically created code to guide classification. Because
their work is much broader than our simple goal of obfusca-
tion detection, their results are not directly comparable.

Canali et al. [2] present Prophiler, which also uses a
lightweight static filter for malware detection. As with NO-
Fus, Prophiler uses static features of JavaScript, in addition
to other features present in the HTML, to quickly classify a
web page a potentially malicious. Unlike NOFUS, they use
a collection of 25 hand-picked JavaScript features including
things like the number of occurrences of eval, the number of
long strings, the number of suspicious object names, etc.
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Rieck et al. [22] describe an approach that combines static
and dynamic features with a classifier framework based on
support vector machines. They pre-process the source code
into tokens and pass groups of tokens (so-called Q-grams)
to automatically extract Q-grams that are predictive of mali-
cious intent. Unlike NOFUS, their approach combines ad-
hoc transformations (e.g., they encode string lengths into
variable names) with automatic feature extraction. Further,
they do not attempt to separate malicous from obfuscated
code or classify whether code is obfuscated or not.

8. Conclusions

Increasingly, JavaScript code is being made available in
repositories for widespread use, such as in a gallery of
browser extensions. Maintainers of such repositories prefer
that this code is unobfuscated so that they can evaluate it
either automatically or by inspection.

In this paper, we describe NOFUS, a fully automatic
classifier that distinguishs obfuscated and non-obfuscated
JavaScript with high precision. Using a collection of exam-
ples of both obfuscated and non-obfuscated JavaScript, we
train a classifier to distinguish between the two and show
that the classifier has both a low false positive rate (about
1%) and low false negative rate (about 5%). We also show
that NOFUS can correctly identify benign obfuscated code
in collections such as Alexa top 50 websites.

While prior work conflates obfuscation with malicious-
ness (assuming that detecting obfuscation implies malicious-
ness), we show that this assumption is flawed. Particularly,
assuming all obfuscated code is malicious can lead to in-
creased false positive rates for malware detectors. Likewise,
as we show, a significant amount of malware is unobfuscated
if it is unfolded in the JavaScript runtime. Thus assuming all
malware is obfuscated can increase false negative rates.
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